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The motion of a Lagrange top, whose suspension point performs high-frequency vertical harmonic oscillations of small amplitude, 
is considered. The angular velocities of the natural rotation of the top and of the rotation of its axis of symmetry around the 
vertical are assumed to be small. It is well known that, in the case of a classical Lagrange top with a fixed suspension point, for 
any values of the parameters of the problem (the values of the constants of cyclical integrals) there is a unique regular precession 
of the top. When the suspension point vibrates the following result is established, which has no analogues in the classical problem: 
regions are distinguished in the plane of those parameters in which, for any position of the centre of gravity of the top on the 
axis of symmetry, there is a unique periodic motion of the top (with a period equal to the period of oscillations of the suspension 
point), close to regular precession, and also regions in which, depending on the position of the centre of gravity, there can be 
one or three such motions. A rigorous solution of the problem of the stability of these motions of the top is given using the 
methods of the KAM theory. © 2000 Elsevier Science Ltd. All rights reserved. 

This paper is a development of the results obtained in [1], where the problem of the periodic motions 
of a spherical pendulum with a vibrating suspension point is solved with assumptions similar to those 
used here. 

A number of investigations have been devoted to different aspects of the problem of the dynamics 
of a rigid symmetrical body with a vibrating suspension point: the motion of a rapidly rotating symmetrical 
and close to symmetrical gyroscope when there are vertical vibrations of the suspension point has been 
investigated in [2, 3], the behaviour of a Lagrange top when the suspension point performs harmonic 
oscillations in a horizontal plane was considered in [4], the motion of a viscoelastic rigid body with a 
moving base was investigated in [5], and the rotation of a Lagrange top when there are random 
oscillations of the point of support was considered in [6]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  C O N V E R S I O N  O F  T H E  
H A M I L T O N  F U N C T I O N  

Consider a dynamic symmetrical rigid body moving in a uniform gravity field around a fixed point 
O. Suppose the centre of mass of the body lies on its dynamic-symmetry axis. This rigid body is called 
a Lagrange top; its motion was investigated in detail in [7-9]. 

We will assume that the point O executes vertical motion in accordance with the law O,O = {(T) 
about a certain fixed point O. Suppose OXYZ is a system of coordinates moving translationally in absolute 
space (the OZ axis is directed vertically upwards) and Oxyz is a system of coordinates, rigidly attached 
to the body, whose axes coincide with the principal axes of inertia of the body for the point O, where 
the Oz axis is directed along the dynamic-symmetry axis, and the centre of mass G of the body lies on 
the positive semiaxis Oz(OG = za, za > 0). We will specify the orientation of the system of coordinates 
Oxyz with respect to OXYZ using the Euler angles. 

The kinetic energy of the body is given by the expression 

I 2 1 
T = - m v  o+mv o + [A(p 2 2 " vG'c' + q2 ) + Cr  2 ] (1 .1)  

where m is the mass of the body, A and C are the equatorial and axial moments of inertia respectively, 
Vo is the velocity of the point O, V6rel = to x OG is the velocity of the point G in the system of coordinates 
OXYZ, and o~ is the vector of the absolute angular velocity of rotation of the body, having projections 
p, q and r in the attached system of coordinates. 
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In projections onto the Oxyz axes we have 0~3 = (0, O, za) r, VGr d = (qz G, -pzc , ,  O) r, Vo = ~n, where 
n = (sin 0 sin q0, sin O, cos ¢p, cos O) r is the unit vector of the vertical axis OZ. 

From (1.1) and Euler's kinematic equations we have the following expression for the kinetic energy 
of the body 

T = I m~2 _ mzc~O sin 0 + 1 A(~} 2 sin2 0 + 02) + 2 C(~ cos 0 + {0) 2 
2 2 

(1.2) 

The potential energy of the body can be calculated from the formula 

I-I = mgzc, cos 0 + mg~(t) (1.3) 

It follows from (1.2) and (1.3) that the coordinates ~g and 9 are cyclical, and the momenta corres- 
ponding to them are the same as in the case of the motion of a Lagrange top with a fixed point O 

pv = A~g sin 2 0 + C(~ cos 0 + q0) cos 0 

P~0 = C(~ cos 0 + £0) 

(1.4) 

We will introduce the notat ionp~ = A a , p ~  = A b  for the constant quantitiespv andp~ (where a and 
b are constants). We then have from (1.4) 

= a - b c ° s 0  Ab (a - b cos 0) cos 0 (1.5) 
sin20 ' f f = ~  sin20 

The momentump0, corresponding to the positional coordinate 0, depends on the motion of the point 
O and given by the equation 

Po = AO - mzG~sin 0 (1.6) 

From (1.2), (1.3), (1.5) and (1.6) we obtain the following expression for the Hamilton function (un- 
important terms which are functions of time or are constant are omitted) 

H = A ( a - b c ° s O ) 2  (P0 + mzG~sin0) 2 
+ ~- mgzc cos0 (1.7) 

2sin 2 0 2A 

The Hamiltonian (1.7) corresponds to a system with one degree of freedom with generalized 
coordinate 0. 

We will further assume that ~(t) = a. cos D.t. We will introduce the dimensionless time "t = D.t and 
dimensionless parameters of the problem and the momentum P0 by the formulae a = D.a', b = D.b', 
P0 = Af/p~. Hamiltonian (1.7) can then be rewritten in the form 

H'  ( a ' - b ' c o s O )  2 + l  (p~_cs inxs inO)2  +dcos0 ,  (1.8) 
= 2sin20 

where 

mzGa-------~* d = mgzG 
c =  A ' ~ (c>0,  d > 0 )  

We will further assume that: (1) the amplitude a.  of the vibrations of the point O is small compared 
with the characteristic dimension of the body, (2) the natural frequency ~l(g/l) (l = A / ( m z c )  is the reduced 
length) of small oscillations of the body as a physical pendulum (when a' = b' = 0) in the neighbourhood 
of stable equilibrium 0 = n is much less than the frequency ~ of the vibrations of the point O, and (3) 
the quantities a '  and b', representing the angular velocities of natural rotation of the body q0 and the 
rotation of its axis of symmetry around the vertical ~), are small. Taking these assumptions into account, 
we have that 

c = a , / l = £  2 (0<E.~I) ,  d=g/(f f~21)=g4y (y>0) ,  a'=e21x, b '=e2~  

The parameters ~x and ~ can be taken to be arbitrary quantities. We will further assume that 
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ct2 ~ [32. The case e~ 2 = [32, when the axis of symmetry of the top can occupy the vertical position 
(0 = 0 or 0 = n) requires a special consideration. 

Making the change of variables 0, p~ ---) x, X in the Hamiltonian (1.8) using the formulae 0 = x, 
p~ --4 eX, we can rewrite it, taking the notation employed into account, in the form 

H ' =  H o +EH t + I E 2 H  2 + l--gall3 (1.9) 
2! 3! 

1 
H o = 0 ,  H I= -~X 2, H 2=-2Xsinxsinx 

H3 =3[  sin2"~sin2 x+2"Yc°sx-I (°~-~c---°sx)2 l s i n  2 x 

We will further carry out the canonical transformation x, X--) q,p, 2~-periodic with respect to x, such 
that the new Hamilton function does not contain the time x in terms up to the third order inclusive in 
e. We obtain its transformation using the Depry-Hori method [10]. 

The new Hamiltonian K(q, p, x)must  have the following structure 

K° +EKI + 1 EEK22! + 1 e3K3. + 0 ( 8  4 ) (1.10) K 

where K 0 = 0 and the functions K1,/(2 and K 3 are found from the relation [10] 

K t = H  I - 0 W  I/0t,  K 2 = H  2+/-IH I+KI, I - 0 W  2/0t  

K s = H 3 + L1H 2 + 2L2H ! + 2Ki, 2 + K2, I - 0W 3 lot 

Here Lj = (f, Wj) is the Poisson bracket of the functionsf  and W h K1, 1 = LIK1, K1,2 = L1K2, K2, 1 - 
L2K1 -L1KI,1, while the functions W/(q, p, x) (i = 1, 2, 3) are chosen so that the quantities Ki (i = 1, 2, 
3) do not contain x. Calculations show that 

W I = 0, W 2 = 2p cos'c sin q, W 3 = - 3 sin 2"c sin 2 q _ 6p2 sin ~ cos q 
4 

=1  2 = 3  K! ~ P ,  K2=0,  K 3 sin2q+67cosq-~ 3(tx-~c°sq)2 (1.11) 
sin 2 q 

Simultaneously with the transformation of the Hamiltonian, we shall seek a corresponding canonical 
replacement of variables having the form 

x = q + Eq (!) + 1E2q(2) + 1 E(3)q(3) + O(E4) 
2! 3! 

0) I 3~(2)  l 2_(3) X = p + e p  +-~..e'v +~e p +O(I; 4) 

The functions q(i)(q,p, z) andp(i)(q,p, x) (i = 1, 2, 3) are obtained using the formulae of the Depry-Hori 
method [10] (which are not derived here) using the expressions for W,. (i = 1, 2, 3) from (1.11). These 
functions have the form 

qa) = 0, q(2) = 2 cos x sin q, q(3) = -12p sin x cos q 

p(l) = 0, p(2) =--2pcos'~cosq, p(3) =-0.75sin2,Csin2q-6p2 sin'rsinq 

After substituting the functions Ki from (1.11) into (1.10) we make one more canonical univalent 
replacement of variables q, p ~ u, v, given by the formulae u = cos q, p = - o  sin q, which reduce (1.1) 
to algebraic form. We have 

K = Ev2(I -u2) /2+e3H(u)+O(£ 4 ) 

(ot-13u) 2 (1.12) 
n(u) = l ( l -  u2) + vu + 

2(1 - u 2) 4 
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The  equat ions  of  mot ion  corresponding to (1.12) have the form 

du ~K dv  ~K 

dr, ~v ' dr, 3u 
(1.13) 

2. T H E  A P P R O X I M A T E  S Y S T E M  A N D  ITS  E Q U I L I B R I U M  P O S I T I O N S  

If  we neglect  terms O(~4), the following au tonomous  system of  differential  equat ions  will cor respond 
to the t runcated  Hami l ton ian  obta ined 

d U = e v ( l _ u 2 ) ,  dv  - e  3 d H  
- -  = euv 2 (2.1) 
dr" dr" du 

We will obtain the equilibrium positions of  approximate system (2.1). Since u ~ __. 1, in the equilibrium 
posit ion v = 0, and the quant i ty  u satisfies the relat ion dl-l/du = 0, where  d H / d u  = f ( u )  - u /2  + )' and 
f ( u )  = (o~ - [~u)(txu - 13)(1 - u2) -2. 

The  equat ion 

1 
f ( u )  = -~ u - )' (2.2) 

which the equil ibr ium values o f u  satisfy, will be investigated graphically in the interval ( -1 ,  1); its roots  
will be the abscissae of  the points of  intersection of  the curve y = f ( u )  and the straight line y = u/2 - 
)'. 

As an analysis shows, the function y = f ( u )  increases monotonical ly  in the interval (-1,  1) for  any 
admissible values of  ct and 13. Its derivative 

(tx2 + ~2 )(1 + 3u 2) - 2cz13u(3 + u 2 ) 
f ' ( u )  - (1 - u2) 3 (2.3) 

has a min imum at u = u.,  which is the root  of  the equat ion f ' ( u )  = 0, where  

f " ( u )  = 
612(t~ 2 + [32)u(1 + u2)-c t13( l+6u 2 +U4)]  

(1 - u Z )  4 

where  u.  > /0  when t~13 t> 0 and u.  < 0 when t~13 < 0. When  -1 < u < u.  the func t iony  = f ' ( u )  decreases  
monotonical ly,  and when u,  < u < 1 it increases monotonically.  Graphs  of  the func t ionsy  = f ( u )  and 
y = f ' ( u )  are shown in Fig. 1 for  the case when ct13 > 0. The  cu rvey  = f ( u )  intersects the ordinate  axis 
at the point  (0, -~13), while the curve y = f ' ( u )  intersects the ordinate  axis at the point  (0, a2 + 132). 

The  following cases of  the intersection of  the curve y = f ( u )  and the straight line y = u/2 - y are 
possible. 

Case 1. I f f ' ( u )  > 1/2 for all u e (-1,  1) (Fig. la) ,  the cu rvey  = f ( u )  at each point  will be "s teeper"  
than the straight line y = u/2 - )', which has a constant  slope. For  any value of  the pa rame te r  y(y > 0) 
the graphs of  the funct ions y = f ( u )  and y = u/2 - y intersect at a single point,  the abscissa of  which 
will hencefor th  be deno ted  by u, and system (2.1) has a unique equil ibrium position. 

Case 2. I f f f (u* )  < 1/2, the straight l iney  = 1/2 intersects the graph of  the func t iony  = i f ( u )  at two 
points (Fig. lb )  and the equat ion  f ' ( u )  = 1/2 has two solutions, which we will deno te  by u(1) and u~2) 
(u(1) < u(2)). At points with abscissae u = u(i) (i = 1, 2) the straight lines y = u/2 - )'(i), shown in 
Fig. l (b)  by the dash-dot  lines, touch the curve y = f(u);  the quantit ies 'Y(i) (i = 1, 2) are functions of  
the parameters  cz and 13. 

If ~/0) > 0 and )'(2) > 0, then for values of  the pa ramete r  y f rom the intervals 0 < )' < )'(1) and y > )'(2) 
the^graphs of  the funct ionsy  = f ( u )  and y = u/2 - y  intersect at a single point;  we will deno te  its abscissa 
by u. When  )'(1) < )' < ~/(2) the graphs intersect at three  points with abscissae u = ui (i = 1, 2, 3), where  
Ul < u0) < u2 < u(2) < u3. In this case system (2.1) has one and three equil ibrium positions respectively. 
If )' = ~/0) or  )' = )'(2), the  system has two equil ibrium positions• 
• When  y,()l < 0, y,()2 > 0 we have three equilibrium positions if 0 < "/< "/()2 and one  equilibrium position 
ff )' > )'(2); if )'(1)< 0 and )'(2)< 0, then, for all )' > 0 the system has one  equil ibrium position. 


